organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

P. R. Seshadri,^{a,b}
S. Selvanayagam,^a
D. Velmurugan,^a*
K. Ravikumar,^c
A. R. Sureshbabu^d and
R. Raghunathan^d

^aDepartment of Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai 600 025, India, ^bDepartment of Physics, Agurchand Manmull Jain college, Chennai 600 114, India, ^cLaboratory of X-ray Crystallography, Indian Institute of Chemical Technology, Hyderabad 500 007, India, and ^dDepartment of Organic Chemistry, University of Madras, Guindy Campus, Chennai 600 025, India

Correspondence e-mail: d_velu@yahoo.com

Key indicators

Single-crystal X-ray study T = 293 K Mean σ (C–C) = 0.003 Å R factor = 0.056 wR factor = 0.171 Data-to-parameter ratio = 16.4

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

© 2004 International Union of Crystallography Printed in Great Britain – all rights reserved The pyrrolidine ring of the title compound, $C_{26}H_{19}ClN_2O_3$, adopts a half-chair conformation. The molecular structure is stabilized by $C-H\cdots O$ interactions and the packing of the molecule is stabilized by $C-H\cdots O$ and $N-H\cdots O$ intermolecular interactions. A dimer is formed between symmetryrelated molecules through $N-H\cdots O$ hydrogen bonds. Received 13 November 2003 Accepted 27 November 2003 Online 12 December 2003

Comment

The spiro ring system is a frequently encountered structural motif in many pharmacologically relevant alkaloids (Cordel, 1981). Several optically active pyrrolidines have been used as intermediates in controlled asymmetric synthesis (Suzuki *et al.*, 1994). In view of this importance, the crystal structure of the title compound, (I), has been carried out and the results are presented here.

Fig. 1 shows a displacement ellipsoid diagram of the molecule with the atomic numbering scheme. Selected geometric parameters are given in Table 1. The bond lengths correlate with a variety of *N*-phenyl-substituted pyrrolidin-2-one systems (Billing *et al.*, 1991). The bond lengths of the pyrrolidine moiety (Table 1) differ slightly from normal values but are comparable with those of previously reported structures (Gzella & Wrzeciono, 1990). This may be due to steric forces of bulky substituents on the pyrrolidine ring.

The total puckering amplitudes (Cremer & Pople, 1975) of the rings A, B, C give a quantitative evaluation of puckering and asymmetry parameters. Ring A is in a half-chair conformation, with lowest asymmetry parameter (Nardelli, 1983) $\Delta C_2[C10] = 0.0047$ (8) and puckering parameters $q_2 =$ 0.0987 (9) Å and $\varphi = -120.7$ (1)°. The pyrrolidine ring B is in a half-chair conformation, with puckering parameters $q_2 =$ 0.407 (2) Å and $\varphi = 16.1$ (3)° and asymmetry parameter $\Delta C_2[C13] = 0.0116$ (9). The indandione ring C is in an envelope conformation, as evidenced from puckering parameters $q_2 = 0.1291$ (9) Å and $\varphi = 7.29$ (8)°, and asymmetry parameter $\Delta_S[C11] = 0.013$ (1), with atom C11 deviating by 0.082 (2) Å from the least-squares plane through the remaining atoms.

Figure 1

View of (I) (50% probability displacement ellipsoids).

Figure 2

View of (I) illustrating the N-H···O hydrogen-bonded dimers.

In the benzene ring of the oxindole moiety, the endocyclic angles at C9 and C6 are 118.1 (2) and 118.9 (2) $^{\circ}$, respectively. At C10 and C7, the angles are 121.3(2) and $120.7(2)^{\circ}$, respectively. The deviations of these angles from the normal value of 120° may be due to the fusion of the small pyrrole ring to the six-membered benzene ring. A similar effect is observed in related reported structures (Sethusankar et al., 2002). The chlorophenyl ring is attached in an equatorial position to the pyrrolidine ring.

A dimer is formed between symmetry-related molecules through $N-H \cdots O$ hydrogen bonds (Fig. 2). In addition to van der Waals interactions, the crystal structure is stabilized by C-H···O intramolecular hydrogen bonds. In the crystal structure, symmetry-related molecules are linked by N-H...O intermolecular interactions. Details of these interactions are given in Table 2.

Experimental

A mixture of O-chlorobenzylidene-1,3-indandione, isatin and sarcosine was refluxed in aqueous methanol. The resulting crude product was filtered and recrystallized from methanol.

Z = 2

 $D_x = 1.367 \text{ Mg m}^{-3}$ Mo $K\alpha$ radiation

reflections

Needle, yellow 0.18 \times 0.16 \times 0.16 mm

 $R_{\rm int} = 0.015$

 $\theta_{\rm max} = 28.0^{\circ}$

 $h = -10 \rightarrow 10$ $k = -11 \rightarrow 15$

 $l = -15 \rightarrow 14$

 $\theta = 2.4 - 26.9^{\circ}$ $\mu = 0.21 \text{ mm}^{-1}$ T = 293 (2) K

Cell parameters from 2195

4731 independent reflections

3499 reflections with $I > 2\sigma(I)$

Crystal data

C ₂₆ H ₁₉ ClN ₂ O ₃
$M_r = 442.88$
Triclinic, P1
a = 7.8394 (6) Å
b = 11.6760 (9) Å
c = 11.8628 (10) Å
$\alpha = 85.657 \ (1)^{\circ}$
$\beta = 89.752 \ (1)^{\circ}$
$\gamma = 83.726 \ (2)^{\circ}$
$V = 1076.22 (15) \text{ Å}^3$

Data collection

Bruker SMART APEX CCD areadetector diffractometer ω scans Absorption correction: multi-scan (SADABS; Sheldrick, 2001) $T_{\min} = 0.954, \ T_{\max} = 0.970$ 6811 measured reflections

Refinement

Refinement on F^2	H-atom parameters constrained
$R[F^2 > 2\sigma(F^2)] = 0.056$	$w = 1/[\sigma^2(F_o^2) + (0.1P)^2]$
$wR(F^2) = 0.172$	where $P = (F_o^2 + 2F_c^2)/3$
S = 1.09	$(\Delta/\sigma)_{\rm max} < 0.001$
4731 reflections	$\Delta \rho_{\rm max} = 0.46 \ {\rm e} \ {\rm \AA}^{-3}$
289 parameters	$\Delta \rho_{\rm min} = -0.42 \text{ e } \text{\AA}^{-3}$

Table 1

Selected geometric parameters (Å, °).

Cl1-C18	1.735 (2)	C4-N14	1.452 (2)
N1-C2	1.356 (3)	N14-C15	1.450 (3)
N1-C10	1.402 (3)	C22-O23	1.202 (2)
C2-O3	1.221 (3)	C30-O31	1.205 (2)
C2-N1-C10	111.9 (2)	C9-C10-N1	128.7 (2)
O3-C2-N1	126.0 (2)	N14-C13-C12	106.1(2)
O3-C2-C4	126.7 (2)	C4-N14-C15	116.1 (2)
N1-C2-C4	107.3 (2)	C4-N14-C13	109.9 (2)
N14-C4-C5	113.9 (2)	C15-N14-C13	115.2 (2)
N14-C4-C2	115.6 (2)	C17-C18-Cl1	119.5 (2)
N14-C4-C11	101.4 (2)	C19-C18-Cl1	118.5 (2)
C5-C6-C7	118.9 (2)	O23-C22-C24	126.1 (2)
C8-C7-C6	120.7 (2)	O23-C22-C11	126.3 (2)
C10-C9-C8	118.1 (2)	O31-C30-C11	125.5 (2)
C5-C10-C9	121.3 (2)	C29-C30-C11	108.0 (2)
C5-C10-N1	109.9 (2)		
C12-C16-C17-C18	-179.5 (2)		

Table 2

Hydrogen-bonding geometry (Å, °).

$D-\mathrm{H}\cdots A$	D-H	$H \cdots A$	$D \cdots A$	$D - H \cdots A$
C12 $-$ H12 \cdots O3	0.98	2.59	3.154 (3)	117
N1 $-$ H1 \cdots O3 ⁱ	0.86	2.09	2.920 (2)	163
C15 $-$ H15 A \cdots O31 ⁱⁱ	0.96	2.57	3.452 (3)	152

Symmetry code: (i) 1 - x, 2 - y, 1 - z; (ii) 1 + x, y, z.

All H atoms were geometrically positioned and allowed to ride on their parent atoms, with C-H = 0.93–0.98 Å, and $U_{iso}(H)$ = $1.5U_{eq}(C)$ for methyl H atoms and $1.2U_{eq}(C)$ for other H atoms.

Data collection: *SMART* (Bruker, 2001); cell refinement: *SAINT* (Bruker, 2001); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS*86 (Sheldrick, 1990); program(s) used to refine structure: *SHELXL*97 (Sheldrick, 1997); molecular graphics: *ORTEP*-3 (Farrugia, 1997) and *PLATON* (Spek, 1990); software used to prepare material for publication: *SHELXL*97 and *PARST* (Nardelli, 1995).

SSN and DV thank the University Grants Commission (UGC), New Delhi, for financial support under the University With Potential For Excellence Programme.

References

Billing, D. G., Boeyens, J. C. A., Levendis, D. C. & Michael, J. P. (1991). S. Afr. Chem. 44, 75–79.

- Bruker (2001). SAINT (Version 6.28a) and SMART (Version 5.625). Bruker AXS Inc., Madison, Wisconsin, USA.
- Cordel, G. (1981). Introduction to Alkaloids, A Biogenetic Approach. New York: Wiley International.
- Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Gzella, A. & Wrzeciono, U. (1990). Acta Cryst. C46, 2107-2109.
- Nardelli, M. (1983). Acta Cryst. C39, 1141-1142.
- Nardelli, M. (1995). J. Appl. Cryst. 28, 659.
- Sethusankar, K., Kanadasan, S., Velmurugan, D., Srinivasan, P. C., Shanmuga Sundara Raj, S. & Fun, H.-K. (2002). *Acta Cryst.* C58, o277–o279.
- Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
- Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany. Sheldrick, G. M. (2001). SADABS. Version 2.03. University of Göttingen,
- Germany.
- Spek, A. L. (1990). Acta Cryst. A46, C-34.
- Suzuki, H., Aoyagi, S. & Kibayashi, C. (1994). Tetrahedron Lett. 35, 6119-6122.